Functional NMDA receptor subtype 2B is expressed in astrocytes after ischemia in vivo and anoxia in vitro.
نویسندگان
چکیده
NMDA-type glutamate receptors play a critical role in neuronal synaptogenesis, plasticity, and excitotoxic death. Recent studies indicate that functional NMDA receptors are also expressed in certain glial populations in the normal brain. Using immunohistochemical methods, we detected the presence of the NMDA receptor 2B (NR2B) subunit of the NMDA receptor in neurons but not astrocytes in the CA1 and subicular regions of the rat hippocampus. However, after ischemia-induced neuronal death in these regions, double immunohistochemical labeling revealed that NR2B subunits colocalized with the astrocyte marker glial fibrillary acid protein and with NR1 subunits that are required for functional NMDA receptors. NR2B expression was first observed 3 d after ischemia and reached a peak at 28 d. At 56 d, only a few NR2B-expressing astrocytes were still present. In vitro, when postnatal hippocampal cultures were subjected to 5 min of anoxia, it resulted in NR2B expression on astrocytes in the glial feed layer. Imaging of intracellular calcium with postanoxic cultures and astrocytes isolated acutely from the ischemic hippocampus revealed a rise in intracellular [Ca2+] after stimulation with the specific agonist NMDA. The response could be blocked reversibly with the competitive antagonist 2-amino-5-phosphonovalerate and attenuated by the NR2B-selective antagonist ifenprodil. Control astrocytes were not responsive to NMDA but responded to glutamate. An understanding of the role of astrocytes that express functional NMDA receptors in response to ischemia may guide development of novel stroke therapies.
منابع مشابه
O 3:Therapeutic Potential of a Novel NMDA Receptor Subunit 2B Antagonist in a Mouse Model of Autoimmune Neuroinflammation
Glutamate-mediated excitotoxicity and neurodegeneration have been shown as pathophysiological hallmarks of multiple sclerosis (MS) and other autoimmune inflammatory CNS disorders. N‑Methyl‑D‑Aspartate (NMDA) receptors play a pivotal role in the mediation of neuronal glutamate excitotoxicity leading to cellular damage and apoptotic cell death. Current treatment approaches targeting glutamate exc...
متن کاملInvulnerability of retinal ganglion cells to NMDA excitotoxicity.
NMDA excitotoxicity has been proposed to mediate the death of retinal ganglion cells (RGCs) in glaucoma and ischemia. Here, we reexamine the effects of glutamate and NMDA on rat RGCs in vitro and in situ. We show that highly purified RGCs express NR1 and NR2 receptor subunits by Western blotting and immunostaining, and functional NMDA receptor channels by whole-cell patch-clamp recording. Never...
متن کاملUp-Regulation of Integrinsn α2β1 and α3β1 Expression in Human Foreskin Fibroblast Cells after In-Vitro Infection with Herpes Simplex Virus Type 1
The interaction of Herpes Simplex Virus type 1 (HSV-1) with human fetal foreskin fibroblast (HFFF) cell was studied using a recent isolate of HSV-1 which was propagated in Hep-2 cells. HFFF cells were challenged with HSV-1 with a multiplicity of infection (MOI) of 1 virus/cell for 24 hours. Flow cytometric analysis demonstrated that HSV-1 challenged HFFF cells expressed increased levels of α2β1...
متن کاملTransplanting P75-Suppressed Bone Marrow Stromal Cells Promotes Functional Behavior in a Rat Model of Spinal Cord Injury
Background: Bone marrow stromal cells (BMSC) have been successfully employed for movement deficit recovery in spinal cord injury (SCI) rat models. One of the unsettled problems in cell transplantation is the relative high proportion of cell death, specifically after neural differentiation. According to our previous studies, p75 receptor, known as the death receptor, is only expressed in BMSC in...
متن کاملG protein‐coupled receptor 37‐like 1 modulates astrocyte glutamate transporters and neuronal NMDA receptors and is neuroprotective in ischemia
We show that the G protein-coupled receptor GPR37-like 1 (GPR37L1) is expressed in most astrocytes and some oligodendrocyte precursors in the mouse central nervous system. This contrasts with GPR37, which is mainly in mature oligodendrocytes. Comparison of wild type and Gpr37l1-/- mice showed that loss of GPR37L1 did not affect the input resistance or resting potential of astrocytes or neurons ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 8 شماره
صفحات -
تاریخ انتشار 2003